Inverse Modelling of Image-based Patient-specific Blood Vessels: Zero-pressure Geometry and in Vivo Stress Incorporation

نویسندگان

  • Joris Bols
  • Joris Degroote
  • Bram Trachet
  • Benedict Verhegghe
  • Patrick Segers
  • Jan Vierendeels
چکیده

In vivo visualization of cardiovascular structures is possible using medical images. However, one has to realize that the resulting 3D geometries correspond to in vivo conditions. This entails an internal stress state to be present in the in vivo measured geometry of e.g. a blood vessel due to the presence of the blood pressure. In order to correct for this in vivo stress, this paper presents an inverse method to restore the original zero-pressure geometry of a structure, and to recover the in vivo stress field of the final, loaded structure. The proposed backward displacement method is able to solve the inverse problem iteratively using fixed point iterations, but can be significantly accelerated by a quasiNewton technique in which a least-squares model is used to approximate the inverse of the Jacobian. The here proposed backward displacement method allows for a straightforward implementation of the algorithm in combination with existing structural solvers, even if the structural solver is a black box, as only an update of the coordinates of the mesh needs to be performed. Mathematics Subject Classification. 65D18, 74L15, 49Q10, 65N21, 90C53. Received December 31, 2011. Published online June 13, 2013.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...

متن کامل

A patient-specific study of blood flow in a cerebral aneurysm using medical images

Background: Cerebral aneurysm disease causes intracranial hemorrhage by rupturing, which can eventually, lead to organ failure or death. For this reason, it is important to anticipate the reasons for rupturing of a cerebral aneurysm from biomechanical point of view. Investigating this disease may even help the physicians to find treatments and predict the patient’s situation. This research was ...

متن کامل

Evaluating the effect of stenosis increase and pulsatile blood pressure on effective stress distribution in viscoelastic finite element model based on carotid artery ultrasound images

The aim of this study is to evaluate the changes of effective stress distribution in plaque by progressing to the stenosis throat and to assess the pulsatile pulse pressure effect on effective stress of a viscoelastic finite-element model of carotid arteries having less and more than 50% stenosis. In-vivo geometries of the arteries were reconstructed using consecutive transverse ultrasound imag...

متن کامل

A Semi-analytical Approach to Elastic-plastic Stress Analysis of FGM Pressure Vessels

An analytical method for predicting elastic–plastic stress distribution in a cylindrical pressure vessel has been presented. The vessel material was a ceramic/metal functionally graded material, i.e. a particle–reinforcement composite. It was assumed that the material’s plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion, and that the vessel was...

متن کامل

Simulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy

Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013